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Abstract
Conformational properties of polymer melts confined between two hard
structureless walls are investigated by Monte Carlo simulation of the bond
fluctuation model. Parallel and perpendicular components of chain extension,
bond–bond correlation function and structure factor are computed and
compared with recent theoretical approaches attempting to go beyond Flory’s
and Silberberg’s hypotheses. We demonstrate that for ultrathin films where
the thickness, H , is smaller than the excluded volume screening length (blob
size), ξ , the chain size parallel to the walls diverges logarithmically, R2/2N ≈
b2 + c log(N) with c ∼ 1/H . The corresponding bond–bond correlation
function decreases like a power law, C(s) = d/sω with s being the curvilinear
distance between bonds and ω = 1. Upon increasing the film thickness, H , we
find—in contrast to Flory’s hypothesis—the bulk exponent ω = 3/2 and, more
importantly, a decreasing d(H ) that gives direct evidence for an enhanced self-
interaction of chain segments reflected at the walls. Systematic deviations from
the Kratky plateau as a function of H are found for the single chain form factor
parallel to the walls in agreement with the non-monotonic behaviour predicted
by theory. This structure in the Kratky plateau might give rise to an erroneous
estimation of the chain extension from scattering experiments. For large H the
deviations are linear with the wavevector, q , but are very weak. In contrast,
for ultrathin films, H < ξ , very strong corrections (albeit logarithmic in q) are
found suggesting a possible experimental verification of our results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The excluded volume interaction or self-repulsion of the segments along an isolated chain leads
to self-avoiding walk statistics of long polymers in dilute solution [1–7]. The chain extension as
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measured by the mean squared end-to-end distance, R2, increases like a power law R ∼ NνSAW

with chain length N . The exponent adopts the non-trivial value νSAW = 0.588 · · ·. The chains
swell in order to reduce intramolecular interactions [1, 6].

In a semi-dilute solution or a melt, however, these excluded volume interactions are
screened on length scales larger than the size of the ‘blob’, ξ [1–3, 6]. For distances smaller
than ξ the chain statistics obeys self-avoiding statistics while for larger distances the chains
adopt Gaussian conformations which are characterized by the exponent ν = 1/2. On large
distances the chains cannot reduce the segmental repulsion by increasing their spatial extension;
the majority of excluded volume interactions stem from intermolecular contacts [1].

The concept of screening of excluded volume interactions in a dense polymer melt—the
Flory hypothesis—plays a pivotal role in modern theory of polymer melts and concentrated
solutions. It has been corroborated by Edwards [3, 8] and is borne out of renormalization
group calculations [6]. The description of chain conformations as Gaussian random walks
lies at the heart of many analytical or numerical approaches, for instance, the self-consistent
field theory [9, 10] which has been widely used to describe spatially inhomogeneous polymer
systems like surfaces of polymer melts, interfaces in polymer blends and self-assembly of
copolymer systems.

One consequence of screening of excluded volume interactions on length scales larger than
ξ is the behaviour in a thin film (see figure 1) [11]: if the chains were describable by random
walks without long ranged interactions the properties parallel and perpendicular to the film
surfaces would decouple. According to Silberberg’s hypothesis [12] the chain conformations
could be conceived as random walks reflected at the film surfaces, i.e., parallel chain extensions
would remain unperturbed.

As we decrease the film thickness, H , the chain folds back into the volume occupied by
their coil and other chains are expelled from that region. Silberberg’s hypothesis has to break
down if the self-density is comparable to the segmental number density of the bulk melt, ρ, i.e.,
ρR2 H ∼ N [13, 14]. For H � ξ the chains adopt quasi-two-dimensional configurations [2]
and the number of intermolecular contacts is strongly reduced. This is illustrated in figure 1(b).

While these phenomenological considerations yield a description of the leading scaling
behaviour of large scale chain conformations, there are subtle corrections that may lead to
significant deviations: renormalization group calculations provide great insight into the way
excluded volume interactions are screened upon increasing the density and the crossing over
from dilute to semi-dilute solutions [2, 4, 6]. These calculations predict the blob size, ξ ,
and the chain extension, R, as a function of the strength of the excluded volume interaction
and the segmental density, ρ. They also provide information about the crossover from self-
avoiding walk behaviour to Gaussian statistics upon increasing the distance along the chain
in semi-dilute solutions. Surprisingly, renormalization group calculations by Schäfer [6] and
Monte Carlo (MC) simulations [15, 13] of the bond fluctuation model revealed deviations from
the plateau in the Kratky plot q2S(q) versus q which were traced back to a Goldstone-type
singularity. These deviations from the plateau in the Kratky plot indicated deviations from the
Gaussian behaviour on length scales larger than ξ . Upon confining the chains into a thin film,
one observes an increase of the deviations from the Gaussian behaviour [13, 14].

Recently, the statistics of quasi-two-dimensional polymer melts (called ‘self-avoiding
trails’) has been studied by Semenov and Johner [11]. This model corresponds to polymers
confined to ultrathin films, H � ξ , where, however, chains and chain segments are still
allowed to overlap, as opposed to the pure two-dimensional limit (H → 0) which has been
considered thoroughly in the past resulting in beautiful analytical predictions [16] and more
recent numerical tests [17–20]. Rather than calculating the chain extension as a function of
density and strength of the excluded volume interaction, Semenov and Johner consider the
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Figure 1. Schematic illustration of a polymer chain with typical size R confined between two
parallel hard and structureless walls at a distance H . The z-axis is perpendicular to the lower wall.
Periodic boundary conditions are used in x and y directions. (a) When ξ � R � H , ξ being
the excluded volume blob size, coils far from the walls are unperturbed, i.e., Rα = Rbulk for all
components α = x, y, z. According to Flory and Edwards, they can be represented, to a first
approximation, as Gaussian chains of blobs of size ξ . For chains (or chain sections) close to the
walls it is generally assumed that they may be reflected at the walls but remain Gaussian. (b) For
H � ξ � Rbulk , the coils become effectively two-dimensional, but are still allowed to overlap
and to cross in the two-dimensional projection. These are called D = 2 + ε systems in contrast
to a purely D = 2 films where intersections are forbidden and the coils become compact. It is
illustrated that in the D = 2 +ε case, the correlation length parallel to the film surfaces differs from
H .

residual excluded volume interaction which is a weak perturbation to Gaussianity for D = 3;
but is marginal, i.e., has to be renormalized, in ultrathin layers. This allows for quantitative
predictions in the melt regime both for films and in the bulk. In contrast to Silberberg’s
argument, the chain extension for these D = 2 + ε systems is predicted to exhibit logarithmic
corrections,

R2
α(N)/2N = b(H )2 + c(H ) log N, (1)

for the parallel components (α = x, y) of the end-to-end distance with respect to the walls.
The first coefficient, b, corresponding to the statistical segment length is predicted to depend
only very weakly on H [11]. The second coefficient c(H ) should be positive and inversely
proportional to the number of particles per unit surface and, hence, inversely proportional to
the film thickness, H . Likewise, one finds in the bulk (D = 3)

R2
α(N)/2N = b2(ρ) − c(ρ)/

√
N (2)

for any component α = x, y, z of the chain end-to-end vector [21]. Note that the second
coefficient decreases now inversely with the monomer density. In both cases, the coefficient
c of the leading correction term does not depend on the excluded volume parameter, v,
expressing the fact that the corrections are due to the large scale incompressibility of the
polymer melt [11, 21].

In our paper we numerically investigate the chain statistics in thin polymer films paying
particular attention to residual excluded volume effects and their dependence on the film
thickness. As sketched in figure 1, our computational study covers the regime from thick
films, H > R, to ultrathin films, H < ξ , and allows us to investigate the crossover from
the bulk behaviour (D = 3) over ultrathin films (D = 2 + ε) up to purely two-dimensional
systems (D = 2). In the next section we describe the model and the simulation technique.
Then we investigate the chain extensions parallel and perpendicular to the film, the bond–
bond correlation function and the single chain structure factor. The final section presents our
conclusion.
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2. Computational model and some technicalities

Coarse-grained models are very efficient for investigating the universal properties of dense
polymer systems. In such models, one integrates over the microscopic degrees of freedom,
which do not affect the universal physical laws, but only their prefactors and local properties.
In this work we have used the ‘bond fluctuation model’ (BFM)—a lattice Monte Carlo scheme
where a monomer occupies eight lattice sites (i.e., the volume fraction φ = 8ρ, ρ being the
number density) and the bonds, l, between adjacent monomers can vary in length and direction,
subject only to excluded volume constraints and entanglement restrictions [22, 24]. The BFM
has been extensively studied in the past [9, 15, 13, 17, 18, 21, 23, 25].

Chain configurations are updated by two kinds of canonical moves: random monomer
hoppings and slithering snake (or reptation) moves [24]. In the first case we consider random
displacements of an effective monomer by one lattice site in one of the six possible directions
in the lattice. These moves are efficient in relaxing the local properties of the chain, such as the
bond angle or the bond length. In slithering snake moves, a segment of the chain is removed
from one end and added to the opposite end of the chain in a random direction. The latter
moves relax the chain conformation a factor N faster than the random monomer hoppings.
(See [25] for details on the exponential increase of the relaxation time for very long chains due
to correlations in the slithering snake motion.)

As illustrated in figure 1, we use an L × L × H box with hard walls at z = 0 and H + 1,
i.e., the thinnest film with H = 2 corresponds to a pure D = 2 system where chains are not
allowed to overlap. For H = 4 this becomes possible and, therefore, this is an ideal system for
testing the predictions of [11]. We have systematically varied the film thickness from H = 2
up to H = 84 while keeping the dimensions parallel to the walls fixed at L = 256 (with the
exception that L(H = 2) = 512). Periodic boundary conditions have been used in x and
y directions. Note that L is always much larger than Rx , the typical chain size component
parallel to the walls.

The chain length ranged from N = 16 up to 256. We have concentrated in this study on
dense polymer melts and all the data reported here are for a number density ρ = 0.5/8. For
this density the (bulk) excluded volume blob size is ξ ≈ 7 [23].

We used the configurational bias method to create the initial configurations for chain
lengths up to N = 64. (The longest chain length possible numerically with this method
decreases with H .) To this end a chain is grown monomer by monomer into the system taking
into account all possible bond vectors for the next monomer. From those positions of the next
monomer, one that does not overlap with any other monomer in the system is chosen at random.
This choice introduces a bias which is removed by the Metropolis acceptance criterion once the
chain is fully grown. For larger N , we started with relatively compact two-dimensional coils
(R ∼ N1/2) oriented parallel to the surfaces. In all cases we equilibrate our systems using a
mixture of local and slithering snake moves which has been found to be the most efficient [25].
Some of our configurations have already been used in some recent related investigations on
thin polymer films [14, 18].

Various static and dynamical properties parallel and perpendicular to the walls have been
measured on the fly and for a more detailed analysis configurations were periodically stored.
Since the x and y directions parallel to the walls are equivalent these properties are averaged
together. If not specified otherwise, properties are averaged over all chains irrespective of
their distance to the walls. For later reference, we note here the bulk values for the end-to-end
distance R ≈ 49.8 and the radius of gyration Rg ≈ 20.3 for chains of length N = 256. The
three components of the mean squared bond vector lα ≡ 〈l2

α〉1/2 ≈ 1.52 of the bulk remain
unchanged for all H > 7. Obviously, the perpendicular component must ultimately vanish
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Figure 2. Parallel and perpendicular components of end-to-end distance R (closed symbols) and
of radius of gyration Rg (open symbols) for N = 256 as a function of the film thickness H . All
the quantities are normalized with respect to the corresponding bulk value. The data are averaged
over all chains in the film irrespective of the distance of their centre of mass from the walls. The
(reduced) parallel components remain constant for distances larger than the characteristic width
H � which for the chain length used is of the order of ξ . The bulk value of ξ for the volume fraction
presented is indicated. Note that for H = 2 no chain overlap is possible in our model and the
chains are rigorously two-dimensional. D = 2 + ε behaviour is expected for 2 < H < ξ . The
perpendicular component increases continuously with H . The effect is linear for H � Rbulk , as
one expects. The inset presents the chain length dependence of the parallel chain dimensions as a
function of H/H � for different chain lengths, N , as indicated in the key. The nice scaling collapse
found confirms the predicted logarithmic dependence of H � and is one central finding of this work.

and the parallel component increase. For H = 4 we find, for example, lx = ly = 1.63 and
lz = 1.2.

3. Results

We discuss now in turn three intra-chain properties: the global chain size Rα(N, H ), the bond–
bond correlation function Cα(s) as a function of curvilinear distance s along the molecule’s
backbone and the form factor Sα(q).

3.1. End-to-end distance and radius of gyration

We start the discussion by presenting the chain size as measured by the three components
R2

α ≡ 〈(rα,N − rα,1)
2〉 of the end-to-end distance R and the corresponding components of the

radius of gyration Rg. Here, rα,n denotes the α-component of the position of the nth monomer
of the chain.

In figure 2 we present the end-to-end distance and the radius of gyration, Rg, as a function
of the film thickness H . The data are normalized by the corresponding bulk value, i.e., all
the ratios must become unity for large H . Only data for chain length N = 256 have been
included. As expected, the thinner the film, the larger the component parallel to the surface and
the smaller the perpendicular one. The perpendicular component increases continuously with
H . The effect is linear for H � Rbulk, as one expects even for perfectly Gaussian chains. Note
that the perpendicular component of Rg increases more rapidly as the component of the end-
to-end vector for small H . In agreement with [11] the (reduced) parallel components remain
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constant for H 
 H � ≈ ξ ≈ 7, but increase rapidly for thinner films. (We recall that for H = 2
no chain overlap is possible in our model and the chains are rigorously two-dimensional.) This
demonstrates that perpendicular and parallel components of the polymer couple, in contrast to
Silberberg’s hypothesis. Note that the observed chain length dependence of the crossover slit
width H � is relatively weak for the chain lengths we have probed (cf figure 2 inset). This is in
line with the predicted logarithmic increase H � ≈ ξ log(N/g), g ∼ ξ2 denoting the number
of monomers contained in the excluded volume blob, which follows readily from the condition
ρR2 H � ∼ N utilizing equations (1) and (2) [11].

In the next figure we present the parallel component of the end-to-end vector, Rx , as a
function of N for different H . Also included are the data for bulk systems (D = 3) without
walls and periodic boundary conditions in all directions. In agreement with equation (2) we
find corrections to ideality even in this latter case. For details the reader is referred to the recent
study [21]. As expected, the reduced data for both D = 3 and 2 limits (H = 2) become chain
length independent for long enough chains. (Note that the chain size for D = 2 is Rx ∼ N1/2

without logarithmic correction [16].) More interestingly, we find that all intermediate data
diverge logarithmically for long enough chains (thin lines). Extrapolating our data, one even
expects that for N 
 2000 and H = 4 the chains will become actually larger than the pure
D = 2 ones. In their work Semenov and Johner [11] have predicted for the slope in log-linear
coordinates (cf equation (1))

1/c = 4πc0 = 4πρH (3)

where c0 is the number of particles per unit surface. Hence, the coefficient decreases inversely
with H . In contrast, the first coefficient, b, of equation (1) is predicted to depend only very
weakly on H [11]. Using equation (3) and adjusting b(H ) we obtain rather good agreement
with the numerical data. This is the central result of this work. Note that b(H ) is essentially
constant as can be seen from the convergence of the lines for small N . We even get acceptable
fits for film widths three times larger than ξ , which is consistent with the logarithmic increase
of H � with chain length mentioned above.

We have also investigated the components of the mean squared distance along the chain
R2

α(s) ≡ 〈(rα,n − rα,n+s)
2〉n obtained by averaging over all chains and all pairs of monomers

separated by a curvilinear distance s = |m − n| along a chain. Here, 〈· · ·〉n denotes the
average over all couples of bonds having curvilinear distance s and over all polymers in the
system. The predictions of [11, 21], equations (1) and (2), generalize readily from s = N to
arbitrary curvilinear distance. This is well confirmed by our data which look quite similar to
those given in figure 3. Instead of discussing these data we will rather proceed by discussing
the numerically more challenging curvature of Rα(s), i.e., by presenting our results on the
bond–bond correlation function, which allows a much more accurate test of the predictions.

3.2. Bond–bond correlation function

The connection between the mean squared distance between two segments n and m along the
chain and the bond–bond correlation function is due to the exact formula

〈lα,nlα,m〉 = −1

2

∂2

∂m∂n
〈(rα,n − rα,m)2〉 (4)

valid for α = x, y, z. Note that the bond vector is defined as ln = rn+1 − rn ≈ ∂rn/∂n,
the latter identity becoming true in the continuous limit. More generally, equation (4) may
be written in terms of the difference operator �n f (n) = f (n + 1) − f (n). In that sense, it
remains valid for arbitrary curves, rn, even for non-differentiable Brownian walks.
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Figure 3. Parallel components of the end-to-end distance for different H as a function of
chain length N . We plot R2

x /2N in log-linear coordinates to demonstrate the expected logarithmic
divergence for D = 2 + ε systems [11]. The thin lines compare with the prediction,
equations (1), (3), where we directly verify c(H ) = 1/4πρH and fit for the coefficient b(H )

which is found to depend very weakly on the film width becoming ultimately H independent
(left side of figure). The pure D = 2 data (H = 2, stars) become chain length independent for
chain lengths N � 64 (dashed line). Note that even the bulk data are monotonically increasing in
agreement with equation (2).

Averaging again over all pairs (n, m = n + s) we have computed the correlation functions
Cα(s) = 〈lα,nlα,n+s〉n/ l2

α.4 Neglecting chain end effects and using equation (4) one obtains the
compact relation 2Cα(s)l2

α = ∂2
s R2

α(s) between the two curvilinear properties.
From equations (1) and (2), generalized to arbitrary s, we immediately see that the bond–

bond correlation function must become

Cα(s) = ds−ω (5)

with a prefactor d ∼ 1/ρ and an exponent ω = 3/2 for the bulk and d = c/ l2
α, ω = 1 for

ultrathin films. Noticeably, the long distance behaviour of Cα(s) is not characterized by a length
scale (persistence length) but the residual excluded volume interaction change the dominant
scaling behaviour to a scale-free power law. This is in marked contrast to the Flory hypothesis
where long ranged correlations between bonds are neglected and Cα(s) is assumed to decay
exponentially (or even faster) [21]. The technical advantage of the bond–bond correlation
function compared with the curvilinear distance is that it does not depend on the trivial, but
very large Gaussian contribution which drops out after differentiating. Hence, it allows us to
focus directly on the corrections to the Gaussian behaviour on large length scales.

In figure 4 the perpendicular bond–bond correlation function,Cz(s), is plotted as a function
of the curvilinear distance, s, for chain length N = 256 and different film thicknesses, H . For
very thin films negative correlations at short distances can be observed. For H = 4 and 5, on
average, the angle ϑ between two consecutive bonds, in the direction perpendicular to the walls,
is larger than 90◦ (i.e., the two vectors have opposite direction). For H = 7, the correlations
reach the minimum for s = 2. This means that chains fold back every two monomers. These
results are a trivial consequence of confinement. For very thin films, due to strong fluctuations
of the density as a function of the distance from the walls, the system essentially consists of

4 We have compared this definition to 〈eα,n eα,n+s 〉n for the normalized bond vector en without finding any measurable
difference. This might be due to the weak correlation between bond length and bond angle fluctuations.
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between monomers for N = 256 and different film thicknesses, H . The inset shows the behaviour
of the same correlation function for polymers with centres of mass at distances z = 4 and 30 from
the wall at z = 0 in a film with H = 62.

the superposition of monolayers with distance equal to the lattice spacing. For H = 4 and 5
we have two layers; then two consecutive segments along the chain are prevalently located in
different planes and the chain is reflected at the surface. For H = 7, we have one more layer
and then up to three linked monomers can be placed at different heights. Upon increasing the
film thickness, H , above the blob size, ξ , Cz(s) gradually tends to the curve obtained in the
bulk.

The same effect can also be observed for thicker films taking into account only chains with
the centre of mass having a distance, z, from the walls smaller than ξ . This is a consequence of
excluded volume effects in the direction perpendicular to the wall which give rise to a strong
anisotropic deformation of the coil. In the inset of figure 4 we show Cz(s) calculated for
polymers with different distances, z, of their centres of mass from the surface. In this plot we
compare the curves obtained for z = 4 and 30 in a film with H = 62. While in the first case
the interactions with the wall must be very strong the walls should have a negligible effect
on the latter where the chains are exactly located in the middle of the film. Indeed, only in
the first case can evident negative correlations be seen and we recover bulk behaviour in the
second. The insufficient statistics prevents a precise location of the minimum for z = 4. This
value roughly corresponds to s = 5 which is close to the distance of the centre of mass from
the wall.

A quantitative analysis of the decay of Cx(s) is given in figure 5 where we plot the function
on a double logarithmic scale. The curves can be fitted rather well by power laws, in agreement
with equation (5), and exponential behaviour can definitely be ruled out for long enough chains.
Obviously, this is a clear-cut contradiction to Flory’s and Silberberg’s descriptions. For large
thicknesses, H > 7 ≈ ξ , we observe the expected bulk exponent ω = 3/2. Interestingly, the
prefactor, d , increases as we decrease the film thickness, H , although the exponent remains
constant. This shift can be related to the dependence on the fraction of polymers ∝1/H
which interact with the surface. Chain segments close to the wall have increased bond–bond
correlations 〈lx,nlx,n+s〉 due to the enhanced self-interaction of the segment which is, in turn, due
to the reflection of the segment at the wall. To first order, the reflections may still be described
by Gaussian statistics. As H increases and the relative population of chain segments of size s
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remains unchanged for H 
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demonstrate a systematic increase with decreasing H . Finally, for D = 2+ε films our data confirm
the exponent ω = 1 (upper bold line) implicit in the work of Semenov and Johner [11]. (b) Double
logarithmic plot of Cend,x (s) in the bulk and a thin film, H = 4, corresponding to D = 2 + ε. The
bulk correlation function averaged over all pairs is shown as a reference. The predicted power laws
are indicated by straight lines.

decreases the amplitude must decrease. This interpretation has been directly confirmed by
computing, as in figure 4, Cx(s) for various distances, z, of the chain centre of mass from the
walls (not shown). For ultrathin D = 2 + ε films, the bulk exponent must break down. Indeed,
our data are still compatible with a power law but with the exponent ω = 1 predicted for this
regime.

Since finite-chain size effects could be crucial here, larger chains are needed to rigorously
establish the exponent over more than a decade in s. In the bulk the correlation function decays
more rapidly for short chains and its explicit dependence on N has been obtained [21]. This
is, in part, due to the behaviour close to the chain ends. In the analysis we have averaged the
correlations over all pairs with the same distance, s, along the chain’s contour but neglected
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Figure 6. Single chain form factor for wavevectors q parallel to the wall surfaces for different H .
Only data for N = 256 and ρ = 0.5/8 are considered. The bulk result (H → ∞) is given by
the bold line; Flory’s hypothesis is indicated by the broken line. The Bragg limit (q > 1) is not
affected by the presence of the walls. However, this can be clearly seen for larger length scales
where the scattering amplitude goes systematically down with decreasing film width. The effect is
the most prominent for the D = 2 system (stars), but even there the Bragg peak is not altered. The
inset presents the ratio of the structure factor, SDebye, of a Gaussian chain with the measured radius

of gyration and the structure factor, S(q), observed in the simulations as a function of
√

(q Rgx )2.

chain end effects. This is permissible for large N .5 Interestingly, the correlation function
measured from a chain end, Cend,α(s) ≡ 〈lα,0.lα,s〉n/ l2

α , decays with a different, stronger
exponent, ωe = D/2 + 1. The simulation results are presented in panel (b) of figure 5. For
bulk melts, very long chains are available [21] and confirm the value of the exponent, ωe = 5/2
for D = 3. The data for thin films are also compatible with the theoretical prediction.

3.3. Form factor S(q)

The single chain form factor

S(q) = 1

N

N∑
n,m=1

〈
exp

(
i
∑

α

qα(rα,n − rα,m)

)〉
(6)

of a chain is an important, experimentally relevant quantity. The components of the scattered
radiation vector are denoted by qα. We are only interested here in the internal correlations
parallel to the wall and, hence, consider only wavevectors parallel to the surface (qz = 0) and
omit the index in the following.

In figure 6 we present S(q) for different film thicknesses and chain length N = 256. The
analogous quantity, calculated for the bulk system, is also depicted as a reference curve. For
small q the form factor just counts the number of scattering units; for large q it probes the
structure on the scale of the monomers, the so-called Bragg peak. Not surprisingly, in both
limits S(q) does not depend on the presence of walls. For small q the data should be described
by the rather general expansion S(q) = N[1−(Rgx q)2 + · · ·] due to Guinier [3]. Here, Rgx(H )

stands for the measured parallel component of the radius of gyration. Since Rgx increases for
small H (figure 2) the structure factor should decrease in agreement with what can be seen
in the figure. One can check explicitly for all H that Guinier’s formula applies. Hence, the

5 The dependence of correlations on the position along the chain has recently been studied for isolated, self-repelling
polymer chains by Schäfer and Elsner [26].
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Figure 7. Kratky plot (q Rgx )2S(q)/N versus q Rgx for wavevectors parallel to the walls using
the same symbols as in the previous plot. We have rescaled the data with the chain length N and
Rgx , the measured component of the radius of gyration parallel to the surface. We see that the
density fluctuations get systematically suppressed with decreasing film width H . The data for
H = 4 have been compared with the logarithmic correction, equation (7), proposed in [11] and
the bulk data (bold line) with the corresponding linear relationship (dashed line). The dashed–
dotted line indicates the Debye functions SDebye(q Rgx )/N . The inset presents the deviation,
SDebye(q)/S(q) − 1, of the measured form factor in thin films with 4 � H � 12 from the
Debye function for the same radius of gyration. As expected, for 1 > q > 1/Rg the deviations
grow logarithmically in q and the amplitude is proportional to 1/H as can be seen from the scaling
collapse. The deviation decreases again for large q due to additional (non-universal) corrections
in the Bragg limit which are not taken into account by the theory.

deviation from the bulk limit seen in this regime is fully described in terms of the increased
chain size.

The Gaussian self-similar structure for intermediate length scales is the essence of Flory’s
hypothesis and results in a power law behaviour of the form S(q) ∼ 1/q2, which is indicated
by the broken line. Broadly, this is confirmed by the thick films (H � ξ). Differences become
more apparent when we plot the ratio of the structure factor of a Gaussian chain, SDebye, with the
same radius of gyration and the measured single chain structure factor. This ratio is presented
in the inset of figure 6. The clearly observable deviations are already present in the bulk [15]
and increase upon reducing the film thickness [13]. Significant differences with respect to
Gaussianity are observed for the thin films.

The deviations from the Gaussian behaviour as well as the effect of the confinement are
magnified in the Kratky plot shown in figure 7 where we have plotted (q Rgx)

2S(q)/N versus
q Rgx for N = 256. This plot illustrates a popular method for extracting the chain dimensions
from scattering data. Using the measured value of the radius of gyration we obtain perfect
scaling for the Guinier regime, q Rgx < 1. Not surprisingly, the scaling fails for very large q
(Bragg peak) where the data diverge. More interestingly, the scaling fails even for intermediate
wavevectors where it should hold for Gaussian statistics [15]. Instead we find a pronounced
non-monotonic behaviour in stark contrast to traditional hypotheses. As already seen in the
previous figure, the deviations get more pronounced with increased confinement [13]. Similar
deviations are also observed in semi-dilute bulk solutions of long chains, N = 2048 [15].

These effects have been analytically predicted for semi-dilute solutions [15] and melts [11].
For q Rgx 
 1 and for long chains6

SDebye(q)

S(q)
− 1 = e(H ) log(q f (H )) (7)

6 For exponentially long chains yet another regime is expected [11] which is outside the reach of simulation.
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has been suggested for thin films. Only the first of the two coefficients e(H ) and f (H ) should
depend sufficiently strongly on the slit width to be measurable: e(H ) ∼ c(H ) ∼ 1/H [11].
SDebye(q) denotes the structure factor of a Gaussian chain with identical radius of gyration.
In the inset of figure 7 we explicitly verify the film thickness and wavevector dependence for
4 � H � 12. It also confirms that e(H ) log( f (H )) is rather small. For D = 3 melts the
deviation from the Kratky plot has been estimated more recently by Beckrich [27] using the
perturbation approach of [11]. This yields the linear expression SDebye(q)

S(q)
−1 = e(ρ)q which we

have fitted to our bulk data (dashed line). A similar expression was derived for the limit of semi-
dilute solutions (ρ � 1 but ρR3/N 
 1) by Schäfer SDebye(q)/S(q)−1 = e′[(qξ)2]1−ε/2 +· · ·
where e′ is a constant and ε = 4 − D [6]. Thus we expect corrections to the Kratky plot
to be present over the entire concentration regime where the chains overlap. Since not all
prefactors are explicitly available as a function of the model parameters of the BFM the test
is less rigorous than the one in figure 3. While our simulation data are compatible with the
theoretical predictions, longer chain lengths would clearly be desirable.

4. Conclusions

Using Monte Carlo simulations of long polymers confined between hard structureless walls
we investigate deviations from the classical hypotheses of Flory [1] and Silberberg [12]. In
agreement with recent theoretical work [11] on ultrathin films with H < ξ we find that parallel
and perpendicular components couple and the chain size parallel to the surfaces increases
strongly. We quantitatively demonstrate the logarithmic divergence, equation (1), for the chain
size parallel to the walls as a function of chain length, N . The prefactor c ∼ 1/H predicted for
the logarithmic deviation allowed a rather accurate fit of our data. As emphasized in [11, 21],
these effects are due to the chain connectivity and the large scale osmotic incompressibility of
the solution and express universal physics independent of local properties.

Perhaps the most striking effect of this study is the power law asymptote for the bond–
bond correlation function which measures the curvatures of the curvilinear distance along the
chains. It allows a direct numerical test of the non-Gaussian corrections both in the bulk and
in the ultrathin films and demonstrates the presence of long ranged correlations neglected by
the classical hypotheses. Note that the decay exponent for both bulk and thin film geometry
can be expressed in the form ω = νD, D being the effective dimensionality of the system and
ν = 1/2 the characteristic exponent of a random walk. Interestingly, this is similar to the result
obtained for the velocity correlation function of dense liquids in two and three dimensions [28].

An important consequence of our work arises for an experimentally relevant quantity,
the static structure factor S(q). In fact, simulation and theory show distinct non-monotonic
behaviour of q2S(q) versus q (Kratky plot) due to the non-Gaussian corrections which even
get enhanced with decreasing film width. This suggests a possible route for experimental
verification and is a cause for serious concern as regards the standard operational definition
and measure of the persistence length from the ‘assumed’ Kratky plateau.

Finally, we point out that the physical mechanism which has been sketched above is rather
general and should not be altered by details such as a finite persistence length—at least not as
long as the nematic ordering remains negligible. This is in fact confirmed by preliminary and
on-going simulations.
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[15] Müller M, Binder K and Schäfer L 2000 Macromolecules 33 3902
[16] Eisenriegler E, Kremer K and Binder K 1982 J. Chem. Phys. 77 6296

Duplantier B and Saleur H 1986 Phys. Rev. Lett. 57 3179
Duplantier B and Saleur H 1987 Phys. Rev. Lett. 59 539

[17] Carmesin I and Kremer K 1990 J. Physique 51 915
[18] Cavallo A, Müller M and Binder K 2003 Europhys. Lett. 61 214
[19] Yethiraj A 2003 Macromolecules 36 5854
[20] Hehmeyer O J, Arya G and Panagiotopoulos A Z 2004 J. Phys. Chem. 108 6809
[21] Wittmer J P et al 2004 Phys. Rev. Lett. 93 147801
[22] Carmesin I and Kremer K 1988 Macromolecules 21 2819

Deutsch H P and Binder K 1991 J. Chem. Phys. 94 2294
[23] Paul W, Binder K, Heermann D and Kremer K 1991 J. Physique II 1 37
[24] Baschnagel J, Wittmer J P and Meyer H 2004 Monte Carlo simulation of polymers: coarse-grained models

Computational Soft Matter: From Synthetic Polymers to Proteins (NIC Series vol 23) ed N Attig et al
pp 83–140 (Preprint cond-mat/0407717)

[25] Mattioni L et al 2003 Eur. Phys. J. E 10 369
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